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The Langevin equations for a particle of an arbitrary shape and the correlation 
functions for the fluctuating forces, torques, or force-torque acting on the 
particle in a rotating flow are derived from the semimicroscopic level of coarse 
graining by using fluctuating hydrodynamics. In order to obtain the solution of 
the Navier-Stokes Langevin equation valid over the entire flow region, use is 
made of the method of matched asymptotic expansions in (~'2'fa2/v) 1/2 <~ 1. The 
cases of slow and rapid rotation are analyzed. It is shown that the fluctuation- 
dissipation theorems hold up to the order of (f2} a2/v) 1/2 in both slow and rapid 
rotation, and that the diffusivity tensor depends on the angular velocity of the 
fluid and becomes anisotropic. 

KEY WORDS: Langevin equation; Brownian motion; rotating flow; 
fluctuating hydrodynamics; fluctuation-dissipation theorem; method of matched 
asymptotic expansions. 

1. I N T R O D U C T I O N  

F r o m  the first successful theory of Brownian  mot ion  due to Einstein fl) 

there have been many  studies of r a n d o m  mot ion  of suspending particle in 
a quiescent fluid, which has been considered as a prime example of non-  
equi l ibr ium phenomena .  The r a n d o m  mot ion  of a Brownian  particle can be 
described by the generalized Langevin  equat ion  ~2/ 

dUi(t) f '  m d~-- d s ~ o ( t - s  ) Uj(s)+F~(t)  (1.1) 
oO  

( F i ( t ) )  = 0 ,  (Fi ( t )  F j ( s ) ) = 2 k B T r  (1.2) 
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where m is the mass of the particle and Ui(t ) its velocity, ~ij(t) is the time- 
dependent Stokes friction tensor, F~(t) is the fluctuating force due to the 
thermal agitation, and ( . )  denotes the thermal equilibrium ensemble 
average, and the summation convention is used throughout this paper. 
The generalized Langevin equation (1.1) and the fluctuation-dissipation 
theorem (FD theorem) (1.2) are quite general and valid for any fluctua- 
tions in a system in thermal equilibrium, and can be derived on the 
grounds of statistical mechanics./2'3) It is, however, difficult to compute 
(~(t) explicitly even for the spherical Brownian particle from the Liouville 
equation on first principles of statistical mechanics. An alternative way to 
obtain the explicit form of the FD theorem is to use linearized fluctuating 
hydrodynamics (LFHD). LFHD can be considered as a semimicroscopic 
theory in that the FD theorem is assumed on basis of the linearized 
Navier-Stokes Langevin equation. (4 9) The relevance of the LFHD has 
been clearly shown in the study of thermal fluctuations. In fact, the velocity 
autocorrelation for the Brownian particle can be expressed explicitly 
in terms of its friction coefficient which causes the long-time tail of 
the correlation function. (1~12) Many applications have been made for 
example, to treat particles of arbitrary shape, ~13'14) many-particle systems, ~15) 
polymers, (16) and wall effects. (17 

The extension of the theory of thermal fluctuations to the nonlinear 
regime has also been attempted. The theoretical basis for fluctuating 
hydrodynamics (FHD) far from equilibrium has been presented by 
Keizer (18) from the viewpoint of elementary molecular processes (see also 
Fox(191), and it has been shown that the basic equations are governed by 
the Navier-Stokes Langevin equation. The thermal fluctuations in a fluid 
under the presence of a uniform steady velocity or temperature gradient 
have been examined by using the FHD (2w23) and it was found that the 
asymmetry in the correlation function of the density-density fluctuations 
in frequency space is in agreement with the experimental results. The 
Brownian motion in a fluid near the critical point of Rayleigh-B6nard 
convection has been examined by Lekkerkerker (24) Garisto and Mazur, (25) 
who found that the friction constant and diffusion coefficient for a spherical 
Brownian particle are proportinal to e 1/2 and e -3/2 (divergent) as e tends to 
zero, respectively, where e= (Rac-Ra)/Rac, and Ra and Rac are the 
Rayleigh and critical Rayleigh numbers, respectively. 

The above analyses for Brownian motion were carried out in the 
absence of macroscopic flow. It is interesting to consider the validity of the 
FD theorem when there exists a macroscopic flow. For a Brownian particle 
in a constant uniform flow, Kaneda (26'27) derived the nonlinear Langevin 
equation and obtained the FD theorem valid up to O(R) by using 
the Navier-Stokes Langevin equation, where R=aUo/v and a is the 
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characteristic particle length, Uo is the particle velocity, and v is the 
kinematic viscosity of the fluid. Hermans (28) used the Oseen Langevin 
equation, which is not consistent with Keizer's results, and it is known that 
the Oseen equation is not a correct approximation near the particle. Rubi 
and Bedeaux (29) recently studied Brownian motion in an elongational flow 
and found that to linear order of the penetration depth the t-3/2 long-time 
tail of the velocity correlation function is modified and the anisotropic FD 
theorem obtained even for the spherical particle. Ryskin (3~ considered 
Brownian motion in an ultracentrifuge and showed on phenomenological 
grounds that the diffusion coefficients depend on the square root of the 
rotation rate. 

I shall consider the Langevin equations for a Brownian particle in a 
rotating flow with constant angular velocity f2~, from the semimicroscopic 
viewpoint. 131) Since the fluid has an anisotropic nature due to the rotation, 
it would be expected that the Langevin equations are modified and the FD 
relations become anisotropic. I consider the zero-frequency limit of the 
correlation functions of the random forces and torques acting on the par- 
ticle because it determines the diffusion coefficients. To see the effects of the 
macroscopic flow, we need to consider the nonlinear terms of the Navier- 
Stokes Langevin equation and thus to use the method of matched 
asymptotic expansions as studied by Kaneda)  2~,~7I I shall present the 
analysis mainly for the slow rotation case, i.e., aUo/v ~ (a2f2~f/V) 1/2 <~ 1, but 
for the fast rotating case [Uo/t2'ia~(a2f2'r/v)l/2~ 1] a brief analysis is 
shown. It is found that to first order in (aZ~2)/v) 1/2 the rotation causes 
the friction tensor to have nondiagonal components and the correlation 
functions of the fluctuating forces or torques to be anisotropic. In the 
following sections I will analyze these problems by using matched 
asymptotic expansions and Kaneda's method (26,27~ of using correlation 
functions, to obtain clearly boundary conditions for the fluctuating fields 
that have not been explicitly presented in previous work. 

2. BASIC E Q U A T I O N S  

Consider particles suspended in an infinite region of an incompressible 
fluctuating fluid which is undergoing rigid rotation with constant angular 
velocity f~). We assume that the suspension is so dilute that the interaction 
between the particles can be neglected. A particle of an arbitrary shape 
with characteristic length a and mass m is assumed to be translated with 
speed U~ relative to the systematic unperturbed flow and to be rotating 
with angular velocity f ~ .  The origin of the Cartesian coordinate system is 
chosen to be fixed to the particle and for the fluid to rotate about the x 2 
axis. In this coordinate system, the unperturbed flow is expressed as 
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v~ = - U ~  + ~}  x r' [or = - U ~  + C ' .  r', C~ = I~}1 (6n 6j3 - 6i36j,)]. The 
motion of the fluid is assumed to be described by the Navier-Stokes 
Langevin equations 

[-c~ v' ] dU~ V " v ' = 0  
p L-b-7 + (v,.V,)v, =v , .  (r ,+ a , ) - p  dr--=' (2.1) 

ziy = -p'6iy + #2e/y, 2e~ - \0x j  + ~xi') (2.2) 

where z~. is the stress tensor due to the velocity field v' and the pressure p'. 
It is assumed that the random stress tensor a~. due to the thermal agitation 
has the stochastic properties 

<a,~(r', t ' ) )  = 0 (2.3) 

< ~y(r'l, t'l) a~,(r~, t~) ) = 2k B Tl~Tij~,f(r' 1 - r~) 6(t'1 - t'2) (2.4) 

7o~, = 6,k3j, + ,~,zfjk - 2 6o6~z (2.5) 

The temperature T is assumed to be constant throughout the fluid and ( - )  
denotes the "local" equilibrium ensemble average with U~, ~ ,  and C' 
fixed. The velocity field v'(r', t') satisfies the following stick boundary con- 
dition on the surface Sp of the particle 

, r t v'(r', t ' ) = ~ x  r ,  on Sp (2.6) 

The motion of the particle is governed by 

d U ;  F' =_ fs; (v '+  a ' ) .  dS' (2.7) m -~7-  = 

J'" dl'~'Bdt' = M'  =- fs~ r' x (V' + a ' ) "  dS' (2.8) 

where J '  is the inertia tensor of the particle and dS' the area segment 
vector taken along the outward normal. If we choose the characteristic 
length, time, and velocity as a, 2to=a2/v, and U o = ( k n T / m )  1/2, 
respectively, then the normalization yields the equations and boundary 
conditions as follows: 

~v V ' v = O  (2.9) 2 ~-  + R(v. V)v = V. (T + a )  -- 2 dUB 
dt ' 

r~y = -P~o + 2eo (2.10) 

@0(r, t))=0 
(ao(r l ,  tl)akt(r2, tz))=]:iykt6(rl--rz)cS(t l-- t2)  (2.11) 
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and 

v(r, t) = f~B x r, r on Sp (2.12) 

where 2 = P/PB is the Lorentz parameter, PB is the density of the particle, 
and R = aUo/v the translational particle Reynolds number. For later use 
we define here other dimensionless parameters: the rotational particle 
Reynolds number Re = a2Oo/V, the rotational Reynolds number RK = Rtc = 
aZf2)/v, and the dimensionless angular velocity ~c = ~2'fa/Uo. 

Let us write 

v=~+ '~ ,  p = / 5 + / ~  (2.13) 

where for simplicity we use the notation Z for ( A ) .  The field (~,/5) is a 
systematic field satisfying 

8~ 
2 - ~ +  R[(~.V)~ + ( ( ~ . V ) ~ ) ]  = V . t -  2 d U----ye V . ~ = 0  (2.14) dt ' 

and the boundary conditions 

~ = ~ e x r ,  r o n S p  (2.15) 

- -UB+~cC ' r  as ]r[ ~ ov 

and the fluctuating field (~, p) satisfies 

,~ -g+  R[(~. v)~ + (~ . v ) , +  (~ . v ) ~ -  <(~. v),~ > ] - v .  ~ = v .  ~, 

V . ~ = 0  (2.16) 

~r = 0, r on @ (2.17) 

The boundary conditions for ~ at infinity are not yet specified. The 
equations of motion of the particle are written as 

d~B 
d U B _  ]~ + ~ , d t  J .  - - ~  = 191 + 191 (2.18) 

F=fs pt.dS, 191=f r x t . d S  (2.19) 
sp 

F=-;sp(q'+O)'dS, 1qeI=fsirX(~+~r)'dS (2.20) 

where (F, M) and (F, I(/I) are the systematic force and torque, and the 
fluctuating force and torque acting on the particle, respectively. We assume 
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that parameters R, Re,  and R~ are not only small, but more restrictive, i.e., 
they satisfy the conditions 

R ~ I, Ro ~ I, R~ ~ I (2.21) 

and 
R < R ~ / 2 ~ I ,  x>~O(1) (2.22) 

The assumption R~R~/2  implies that the effect of inertia due to fluid 
rotation dominates that due to translation and rotation of the particle, 
while R~/2 ~ 1 means slow rotation of the unperturbed flow. 

3. F O R M U L A T I O N  B A S E D  ON T H E  C O R R E L A T I O N  
F U N C T I O N S  

We assume ,~ ,~ 1, so that the time derivatives of the velocity fields can 
be neglected, which corresponds to the zero-frequency limit, and also 
neglect the term R(~ 'V)~ in (2.14) and (2.16) under the assumption of 
(2.22) (Appendix A). Then we obtain the equations and boundary condi- 
tions for the systematic field (~, fi) as 

R(~.V)~ = -Vp + ~ ,  V . ~ = 0  (3.1) 

~ = ~ B x r ,  r o n S p  

-~ - U . + ~ C ' r  as Ir] --* oo (3.2) 

Since, from (3.1), (~,/5) is steady and 6ij(r, t) is a statistically stationary 
process, (~,/~) is also a stationary process, so that correlation functions 
(gi(r, t)6kz(x, t')>, etc., are functions of t - t ' .  Hereafter we shall consider 
the systematic force and correlation function of the random forces for 
simplicity, and the torques or the interaction between the forces and 
torques will be shown if needed or at the final stage. Multiplying (2.16) and 
(2.17) by bkt(r, t'), taking the ensemble average with UB, fiB, C fixed, and 
integrating over t - t ' ,  we have 

= c--~i (6o.(x) 5k,(r) > (3.3) 

- -  ( ~ ( x )  #kt(r)> = 0  
c3x i 

( f i (x)  6k,(r)) = 0, x o n S p  

--, 0 as I x -  r[ ~ oo (3.4) 
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Time integration with respect to t - t' is not shown, for simplicity, until the 
final stage. Similarly multiplying (2.16) and (2.17) by ~)(t'), we obtain 

R (3 , j~ 'V  &5~\ . 

Ox~ <~,(x)L> = o 

<L(x)?j> = O, x on Sp 

--* 0, as [xl ---' oo 

8 
+5-7. <~(x)L> 

(3.5) 

(3.6) 

We now consider the correlation function of the fluctuating forces 
acting on the particle, 

Yo=J  (Fi( t )  Pj( t ' ) )  d ( t - t ' ) =  (P~L> 
- -  oc 

(3.7) 

which can be written by using (2.20) as 

= ( f,p { fi~(x) + e,~(x) } d&(x)Pj) 

: f , ,  {<~,~(x)P~> + <e,~(x)Pj>} ash(x) 
(3.8) 

If we know (ffik(x)Pj>, then by solving (3.5) with (3.6) we can obtain the 
correlation function (3.7). To obtain the field (~Tik(x)~j) , we define a field 

. (qem(X), p*(x))  t adjoint to the problem (3.3) with a vanishing right-hand 
side, as follows: 

-- R 6 o ~ ' V - - ~ x g + 6 ~ A ~ q ) * ( x ) + ~ x p * , ( x ) = O  , ~-~xqi*(X)-----O (3.9) 

q i m ( X )  - -  ~ i m ,  X o n  Sp 
(3.1o) 

~ 0  as Ixl ~ oo 

and the tensor for later use is 

, _ , ~ 8 
Oijm= --Pm~ij+ q *  +-~xeq)*m (3.11) 
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Consider the identity 

O=q~*(x) R (5or~'V+~xj)-a,jA j <~j(xlfkt(r)> 

+ ~ </~(x) akt(r) > - ~-~j <#~(x) a~/(r)> 

a~/\ 7 + ~-- p~*(x)} -(v'(x'#k'(r'>{-[R@~ Oxi 

Using the relation ~32) 

yields 

(3.12) 

(3.13) 

0 
O=~x  j {q*m(X)[<'?o(X) ~k,(r)) + <#o(x) #kl(r))] 

- -  (~i(X) ~k/(r) ) O*m(X) -- Rq*m(X)<gi(x) ~k/(r) > Oj(x) } 

-I~xj q*m(x)] <~/(x) a~t(r) > 
Integrating this over the volume F bounded externally by the spherical 
surface SA with radius A and by the surface Sp of the particle, and using 
Gauss' theorem and the boundary conditions (3.4) and (3.10), we have 

fs [ ( ~ j ( x )  ffkl(r) > + <#mj(X) #~/(r))] dSj(x) 

=/s~ {q*(x)[(fij(x) #k/(r)) + (#u(x) ffkl(r))] 

- <~,(x)~k,(r)> O*m(X) 
- Rq*m(X)<Oi(x) ffkt(r) > ~7/(x) } dS/(x) 

The left-hand side of (3.14) can be written as 

l{/s ~ [~mj(X)+6m/(X)]dS/(x)}~k,(r)>=(Fm6kl(r)> (3.15) 
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On the other hand, from (2.11) we have 

(6,j(x) ffkl(r)) = (Sij(x, t) 5kt(r, t')) d ( t -  t') = 7ijk/6(x - r) (3.16) 
- o o  

and from (2.5) the last term of the right-hand side of (3.14) is 

; r  I~xj q * ( x ) l  (6,j(x) fk,(r))dx=~q~',,,(r) + 8 ork __  q*m(r) (3.17) 

Assuming that the outer surface integral vanishes as A ~ co (Appendix B), 
we obtain 

* X Thus, the field (akl(r)P,n) is expressed by the adjoint field (qim(), p*,(X))'. 

4. THE SYSTEMATIC FORCE AND TORQUE 

We introduce perturbations q and p defined by 

"~= K O ' r - U . + q  

p =  1 2 2 x3 ~) R~cr C ' U , + v  - -  5 R K  ( X  1 + - -  �9 �9 

(4.1) 

Then the equations and boundary conditions for (q, p) become 

R ( ~ C ' r - U B + q ) ' V q + R ~ C ' q =  - V p  + Aq, 

q =  - ~ c a ' r  + U ~ +  f~exr ,  r o n S p  

--,0 as Ir[ --, ~ 

V . q = O  (4.2) 

(4.3) 

If we carry out the regular perturbation method in R, the zeroth-order 
solution is given by the Stokes solution, which has the asymptotic forms of 
qo= O(r -1) and p o =  O(r -~) for large r. However, this approximation is 
not valid over the entire flow region, because the neglected terms 
(nonlinear terms) are comparable with the viscous ones at the distance 
r,=-R2I/2>> 1. The zeroth-order solution is valid only over the region 
r < r , .  Therefore, it is necessary to consider the different expansions valid 
over the inner region ( r<  r , )  and the outer region ( r>  r ,) ,  respectively. 
This method of expansions is called the method of matched asymptotic 
expansions. (~3) In this paper, we use this method to obtain the solution up 
to O(R 1/2) which is uniformly valid over the entire flow region. C34/ 
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4.1. Inner Expansions 

Under the assumption (2.22), the inner expansions are of the form 

q = qo(r) + R~2ql(r) + o(R'~/2) 
(4.4) 

p = p0(r) + R~/2pl(r) + o(R~/2) 

and the systematic force and torque are also expanded as 

F = F 0 + RI/2F 1 + o(R~/2) 
(4.5) 

= Mo + R~/2M1 + o(R~/2) 

where Fo and 1VIo are the force and torque due to (qo, Po), and l~ and ~I1 
the force and torque due to (q l ,  P l ) ,  respectively. Upon substituting (4.4) 
into (4.2) and (4.3) and equating terms in R ~ one obtains 

Aqo-Vpo = 0, V ' q o = 0  (4.6) 

qo = - - K C . r + U . + f l .  xr ,  

~ 0  as Irl -~ ~ 

Likewise, equating terms in R ~/2 

A q l - V p l  =0,  V . q l = 0  

r o n S p  

(4.7) 

(4.8) 

ql = 0 r o n  Sp (4 .9 )  

The boundary conditions for the field (q~, p~) as r ~ ~ are derived by the 
matching procedure. 

4.2. O u t e r  E x p a n s i o n s  

The dimensionless outer variable ~ is defined as ~=R~/2r. The outer 
expansions are 

q = R~/2 QI(~) + o(R~/e) 
(4.10) 

p = R,~P~(~:) + o(R,~) 

If the operators V in (4.2) are rewritten in terms of the outer variable and 
the outer expansions (4.10) are substituted into the resulting equations, it 
is found that, to the lowest order, (Q1, PI) must satisfy 

( C - ~ ) . V Q I +  C . Q I =  - V P I  +AQ~,  V . Q I = 0  (4.11) 

Q ( ~ ) ~ 0  as [rl ~ m (4.12) 

In addition, there are matching conditions at ~ ~ 0. 
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4.3. Z e r o t h - O r d e r  Inner  A p p r o x i m a t i o n  

The solution of (4.6) and (4.7) is clearly the Stokes solution of the 
problem. In our analysis, we require the knowledge of the Stokes field at 
great distances from the particle. The asymptotic forms for r ~ ~ are 

qo(r )  = - s ( r )  �9 F o  - [gs ( r ) ]  : B o + O(r 3) 
(4.13) 

po( r )=  - t ( r ) . F o -  [Vt ( r ) ] :B  o+  O(r 4) 

where 

1 [ ri@ 1 
sij(r) = ~ r  \ 8u + --~-)' tj(r) ---- 4rcr 2 rJr 

(80)o-  (tao)j, = ~(Mo)~, 

with F' o and I9I 0 as the dimensionless Stokes force and torque. 

(4.14) 

4.4. F i rs t -Order  Oute r  A p p r o x i m a t i o n  

Expressing the Stokes solution (qo, Po) in terms of the outer variable, 
we obtain 

q o ( r )  = - -R l~ : /2s ( r ) .  F o + O(Rx) 
(4.15) 

Po(f) = --R~t(f) .  Fo + O(R~/2) 

Hence, requirements for (Q~, P1) to be properly matched with the inner 
expansions are 

Q~(~) = - s ( ~ ) .  Fo, P~(~) = - t (~ ) .  Fo, as I~1 -*0 (4.16) 

The solution of (4.11) subject to (4.2) and (4.16) is given by 

QI(~) = -G(~)"  Fo, P~(~) = -T(~) -  Fo (4.17) 

where the second-rank tensor G(~) and the vector T(~) satisfy 

( C ' ~ ) ' g G + C . G  = - g T +  ~G + I~(~), V . G = 0  (4.18) 

G(~)--* 0 as IEI --* oo (4.19) 

It is known that the expansions of (QI, PI) for small ? are of the form (35) 

Q,(~) = - [ s ( ~ ) -  HI"  1~ o + 0(?)  
( 4 . 2 0 )  

Pl(f)  = - t ( f ) .  ~'o + O( ~-1 ) 

where H is a constant second-rank tensor (Appendix C). 
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4.5. First-Order Inner Approx imat ion  

The boundary conditions of (q l ,P l )  as r ~  oo are obtained from 
(4.20) as 

q ~ H ' F  o, p l = o ( r  -1 ) 

The asymptotic forms of the solution for the Stokes problem (4.8), (4.9), 
and (4.21) are easily found to be 

ql(r)  = H" Fo - s ( r ) -  b + O(r 2) 
(4.22) 

pl(r)  = - t ( r )  �9 b + O(r -3) 

where b is a constant vector. 

4.6. Systemat ic  Force and Torque 

It has already been seen that the zeroth-order inner approximation 
(4.13) and the the first order (4.22) are both solutions of the Stokes 
equations. As is well known, in low-Reynolds-number hydrodynamics, (32) 
the force and torque acting on a particle of an arbitrary shape are given by 

and 

F o =  - I "  U s - A "  ( ~ B -  ~j-) 

19Io = - A  ' '  Ue  - r -  (gB - g j )  
(4.23) 

Fl = F. H -17"o, 1911 = A ' .  H �9 F" o (4.24) 

The tensor I- is a translation dyadic which depends only upon the shape of 
the particle. The tensors IE and A are the rotation dyadic and the coupling 
dyadic at the origin, which depend on the particle shape and the location 
of the origin O. The tensors I" and ~" have the following symmetry relations: 

F o. = F j , ,  X o = S j i  (4.25) 

5. THE A D J O I N T  FIELD 

5.1. Inner and Outer  Expansions 

We write (qi*, P*) = (q*, P*) for the sake of simplicity and analyze 
the adjoint field in the same way as in Section 4. Taking into account the 
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expansions of the systematic field 
expansions as follows: 

q* = q*(r) + Rl~/2q*(r)+ o(R 1/2) 

p* = p * ( r )  + Rl~/2p*(r) + o(R~ 2) 

We define a tensor f,'m due to the adjoint field (qzm, P*) by 

f _ - - ~  

in which f,'m is the ith component 
on a particle translated along the 
sion of (5.2) in R~/2 is 

383 

(~, ,5) for small R t/2 we write the inner 

(5.1) 

{, 

= | Oiz* dSt (5.2) 
d Sp 

of the dimensionless Stokes force acting 
rnth axis with unit velocity. The expan- 

-,,2, o(R~/2) (5.3) f = f 0 + g s  " t +  

where fo  and f l  are  tensors due to (q*, p~) and (q*, p*), respectively. The 
outer expansions are 

q * = R ~ / 2 Q * ( ~ ) +  o(tl~ 1~./'2) 
(5.4) 

p* = R~s + o(R~) 

Substituting (4.1), (4.4), and (5.1) into (3.9) and (3.10), we obtain 

A q g - V p *  =0,  V . q * = 0  

q *  = i, r o n  Sp 

-~0 as ]rl --* oo 

to the order of R ~ and 

A q * - - V p * = 0 ,  V ' q ~ = 0  

q* =0 ,  r on Sp 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

1/2 to the order of R~ . The outer boundary conditions for q; '  are established 
by the matching conditions. For (Q?, P~) we have the equations 

- ( C  �9 ~)'~zO~' + C ' .  Q~' = -~ ' r ' *  + 3 Q~*, ~"  O* = 0 (5.9) 

Q * ( ~ )  ~ 0 as I~t --' o9 (5 .10)  

with the matching conditions at F= 0. 

822/59/t-2-25 
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5.2. Z e r o t h - O r d e r  Inner  A p p r o x i m a t i o n  

The solution of (5.5) and (5.6) can be expressed in terms of the Stokes 
solution. The asymptotic forms of the solution as r ~ oo are 

q~' = -s ( r ) "  f o -  [ V s ( r ) ] : B *  + O(r -3) 
(5.11) 

p*(r) = - t ( r ) "  f o -  [ V t ( r ) ] : B *  + O(r -4) 

with 

( B * ) 0 -  (B*) j  i = t ; ~ j / ( f o )  l (5.12) 

It follows from (4.23) that, recalling the coupling between the force and 
torque, 

(fo),j = --F~j, ()oo)~j = - A v ,  (m0)0 = - X i j  (5.13) 

where 2o and mo are the Stokes coupling and torque tensor defined as in 
(5.2). 

5.3. First-Order Outer A p p r o x i m a t i o n  

From the asymptotic forms (5.11) the matching conditions of 
(Q*, P*)  at ? = 0  are obtained as 

Q~'(~) = -s (~ ) .  fo, P~( i )  = - t (~)  �9 fo (5.14) 

The solution of (5.9) and (5.10) satisfying (5.14) can be written as 

Q*(~) = -G*(~)" f0, P*(~) = -T*(~) .  fo (5.15) 

where (G*, T*)  is the solution of 

- ( C . ~ ) . V G *  + C ' . G *  = - V T *  + AG* + 16(~), ~7. G* = 0  (5.16) 

G*(~) - ,  0 as I ~ 1 ~  (5.17) 

The expansions for small ? yield 

Q*(~) = - [ s ( ~ ) -  H*] .  f o+  O(?) 
(5.18) 

P~'(~) = - t (~)"  fo + 0(? -1) 

where H* is a constant second-rank tensor (Appendix D). 
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5.4. First-Order Inner Approx imat ion  

From the expansions (5.18) and the matching principle, the first-order 
inner solution should satisfy the boundary condition 

q * - ~ H * . f o  as I r [ ~  (5.19) 

The asymptotic forms of the Stokes solution of (5.7), (5.8), and (5.19) for 
large r are 

q * ( r ) =  H * . f o - S ( r ) .  b* + O(r 2) 
(5.20) 

p*(r) = - t ( r )  �9 b* + 0@ -3) 

where b* is a constant tensor. 

6. The FIELD ( ( 0 , ( x ) f f t ) ,  ( P ( x ) f i t ) )  

6.1. Inner and Outer  Expansions 

Let us write 

<g,(x)Pz> = w,(r) = w(r),  </5(x) ~ >  = n,(r) = n(r) (6.1) 

The analysis of (3.5) with (3.6) will proceed in the same way as those of 
Sections 4 and 5. The inner expansions are 

w(r)  = wo(r) + R1~/2wl(r) + o(Rl~/2) 
n(r) = no(r) + Rl~/2nl(r) + o(R1~/2) 

(6.2) 

and the outer expansions 

w(~) = R1/2Wl(~) + o(R~/2) 

n(~) = R~nl(~)  + o(R~) 
(6.3) 

Using (3.i8) and substituting (4.1), (4.4), and (5.1) into (3.5) and (3.6), we 
obtain 

AWo-Vl to=Aq*,  V ' w o = 0  (6.4) 

Wo -- 0, r on  Sp 
(6.5) 

~ 0  as { r l ~  
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to the lowest order in R~/2 and 

A W  1 - - ~ 7 ~  1 = A q * ,  

vv 1 = 0, 
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V ' w l  = 0  (6.6) 

r on Sp (6.7) 

to the first order. The outer boundary conditions for (Wl, nl) can also be 
derived by the matching conditions. The equations and boundary condi- 
tions for (VVI, II1) are 

(C .~ ) .VW,  + C . W ,  = -V I I~  + A W ~ -  AQ*, V . W I = 0  (6.8) 

W~(~)--, 0 as I~l ~ ~ (6.9) 

and the matching conditions at ~= 0. 

6 .2 .  Zeroth-Order  Inner Approx imat ion  

The solution of (6.4) and (6.5) is given by 

(Wo)i,(r) = <~,(r)Fl>o = 0 

(no)t(r) = < p ( r ) E ) o =  --(p*)t(r) 

= 0(r)(fo)jt + O(r-3) (6.10) 

6 .3 .  F i r s t - O r d e r  O u t e r  A p p r o x i m a t i o n  

The matching conditions for (W(~), II(~)) at ~= 0 are 

W~(~) = o(f-1), I]1(~) = t(~)" f o (6.11) 

The solution of (6.8) and (6.9) which satisfies (6.11) is given by 

Wl(~)= - �89  fo 
(6.12) 

n,(~)  = - P * ( ~ ) -  �89 [T* (~ ) - T ( ~ ) ] .  fo 

(Appendix E). From (4.20) and (5.18) the expansion of W~(~) at ~ = 0  is 

Wl(~) = �89 - H)- fo + O(~) (6.13) 

6.4. First -Order Inner Approx imat ion  

By the matching principle, the field (wl(r), nl(r)) must satisfy the 
condition 

wl ( r )  ~ �89  H).  f o as Irl -~ oo (6.14) 
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Then it is easily found that the asymptotic expressions of the solution for 
the Stokes problem (6.6), (6.7), and (6.14) are 

(w~)a(r) = ( ~ i ( r ) F l >  1 = �89 - H, j ) ( fo) j , -  s~(r)dj, + O(r -2) 

(Zrl)l(r)=(fi(r)ff'l>l=tj(r)djl+O(r -3) as I r l ~ o o  
(6.15) 

where dit is a constant tensor. 

7. THE CORRELATION FUNCTION OF THE FLUCTUATING 
FORCES 

Let us consider the correlation function of the fluctuating forces. 
Corresponding to the expansions of (wit, xt), the correlation function is 
expanded as 

Yo = ( Yo)o + R1~/2( Y1)o + ~ (7.1) 

where 

(Yo)o = Is, E<L,(r)P~>o + {~ik(r)Pj>o] d&(r) (7.2) 

is due to (wo, Go) and the second term of (7.1) due to (wl ,  ~i) is also 
defined similarly. Noting (3.18), V - q * = 0 ,  and (6.1), we can write the 
equation of motion (6.4) as 

O 

where 

0 
~ (ffik(r)Pj)o (7.3) 

+~r~r i (q~')kj (r) (.7.4) 

With the use of the stress tensor form (2.10), one can write Eq. (7.3) as 

0 = _ _  Ork [(L;(r)-FJ)~ + (g~(r)Pj>o]  

=~-~{--(P(r)~)o~ik+~[(vi(r)Fj)o--(q~)o-(r)]  

c~ (qg)kj(r)]} (7.5) 
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Substituting (6.10) into (7.5) and using (3.11), we obtain 

0 = ~ r  k [(?i~(r)Pj)o + (#~k(r)Pj)o] = -~ rk  (0~)ikj(r) (7.6) 

Similarly, for (wl ,  nl) we have 

O=-~r k [ (Tik(r)Fj)l @ (#ik(r)Fj),] 

# { _  (/~(r)Pj)l~;k + ~ = ar~ ark [ (gi ( r )Fj) l  - (q*)~(r)] 

+~r,. [ ( v k ( r ) F j ) l -  (q*)~j(r)] (7.7) 

7.1. Ze ro th -Order  Correlat ion Function 

Equation (7.6) implies that the integrand of (7.2) is given in terms of 
the stress tensor due to the zeroth-order adjoint field. Thus, from (5.2) we 
obtain 

( Yo)o = - fs, (0*)ikJ(r) dSk(r) = --(fo)o (7.8) 

7.2. First-Order Corre lat ion  Funct ion  

The first-order correlation function can be obtained as follows. (34) 
Consider the identities 

0 = (q*)i~(r) ~ [(~ik(r)Fj)l + (~ik(r)Fj >1] 

which follows from (7.7) and the fact that Eq. (5.5) can be written as 

c3r-~k (O~)ikm(r) = 0 (7.10) 

Noting the solenoidal condition in i of (q*)gm(r), (~ ( r )P j ) l ,  and (q*)~j(r) 
and using a similar relation to (3.13), 

= (O*),km(r) ~ [ ( f i ( r )Pj ) l  - (q*)~j(r)] (7.11) 
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we can write (7.9) as 

0 =~rk {(q*)~m(r)[(~ek(r)Fj)~ + (c?~k(r)Pj)~] 

-- ( O* )ikm(r)[ ( ~i(r)Fj ) l -- (q*)q(r)] } 
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(7.12) 

Integrating this over the volume VA bounded externally by the surface SA 
of radius A and by the surface Sp of the particle yields 

( fSa-- fSp) { (qff )'m(r)[" (gik(r)~'J)l "k (6/~(r)~)l] 

--(Og)ikm(r)[(~i(r)Pj)~--(q*)u(r)]} dS~(r)=O (7.13) 

Using the boundary condition (5.6), (5.8), and (6.7), and letting A ~ o% 
gives 

( Y1 )m, = fsp [ (?mk(r)f'j)l + (~mk(r)Fj~l ] dSk(r) 

= (I~)mj+ (I2)mj (7.14) 

where 

(I1)mj= lira fsA (qo*)im(r)[(Lk(r)P:), + (~,k(r)P:)~] riSk(r) (7.15) 

(Iz)mJ= --ali~mm fSA (O*)ikm(r)[(g'(r)ff':)l- (q*)~(r)] dSe(r) (7.16) 

Note that the terms in the integrand only contribute to (I~)mj if they do not 
tend to zero faster than r 2 as r--* ~ .  From the asymptotic forms (5.11), 
(5.20), and (6.15) for large r, it follows that the integrand of (7.15) is 
O(r-3). Thus we obtain 

(Is)mj = 0 (7.17) 

Since (f,(r)Pj)l--(q*)o(r)=O(1) for large r from (5.20) and (6.15), 
the contributions to the integral (7.16) come only from the term 
(q*)im(r)=O(r -1) as r--+ ~ .  Therefore substitution of (5.20) and (6.15) 
into (7.16) gives 

(I2)mj : _ _ ~ ( g i k _ _ g i k ) ( f O ) k j _ _ g i k ( f O ) k j  , * Ali~mo~ f_ (O~) i lm( r )dS l ( r )  
A 

1 * A~o~slim~ dS,(r) (7.18) = ~ ( n i k  -]- nik)(fo)k j (O~)ilrn(r) 
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On the other hand, integrating (7.10) over the volume VA and letting 
A ~ o% we obtain 

iS . (O~)ilm(r)dSl(r)~-(fo)im~-2Lm f~ (og),,m(r)dS,(r) (7.19) 

and thus 

= 2(Hik -}- Hik)(fO)im(fO)k j (7.20) (I2)mj 1 , 

Substituting (7.17) and (7.20) into Eq. (7.14), we finally obtain 

= ~ (Hik + Hik)(fo)im(fo)kj (7.21) ( Y1)mj ~ * 

The correlation functions for the fluctuating torques or force-torque can be 
derived similarly. 

8. THE FD T H E O R E M  FOR A B R O W N I A N  PARTICLE IN A 
ROTATING FLOW 

Substituting (4.23) and (4.24) into (2.18) and changing the coordinate 
system to the laboratory frame, we obtain the Langevin equations 
including the effects of particle rotation in matrix form as 

J'.B = - \  R:/2A'-H, I}\A' ,  E ) t f l , - l l y ) + t l ~ r  (8.1) 

up to O(R1/2), where VB = (d/dt)XB, Vf= xC" X~, and X B is the position 
vector of the particle from the origin O which is on the axis of fluid 
rotation. Substitution of (7.8) and (7.21) into (7.1) and the use of (5.13) 
yields 

(F5 =o(R'~/~), ( M S  =o(R~/~) (8.2) 

for 1/~1/2/~ err + H ~ ) F o + o ( R l j  '2) (8.3) (Fi(t) Fi(O) ) dt = Fij + 2~.~ ~ikt-~, 
- -O:3  

f 
oo  

1DI/21 ~ (l-I (Fi(t) Mj(O)) d t=A , j+  21,~ --ixt ,~,+ H*)Ao+o(RlJ  2) (8.4) 
o o  

f 
~ 

1 1/2 (J~c,(t) Jl4j(0)) d t=Xo  + g R  ~ Aki(Hgz+ H~IAo+o(R~/2 ) (8.5) 
- - o o  
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where 

0:3 t 
H o = Hi*= h2 (8.6) 

\ h  3 O hi / 

6rchl = 3 " ~ ( 1 9  + 9 x / ~  280 ' 6rch2 = ~ ' arch3 = 3 x~(19 - 9xf3) 280 (8.7) 

Thus, the FD theorems hold up to RI~/2 for a Brownian particle of arbitrary 
shape in a rotating fluid. It should be noted that for a particle with A = 0 
(e.g., sphere, regular polyhedron, ellipsoid), inertial effects due to fluid rota- 

2/2 tion do not affect the systematic and fluctuating torque to R~ . Formulas 
(8.1) (8.7) can be applied to any Brownian particle of arbitrary shape, but 
it is not easy to obtain the explicit form of the friction tensors for a particle. 
For the special case of a spherical particle in which F o = 6~(5~, A o = 0, and 
S o =  8~r6~, the Langevin equations can be written in dimensional form as 

d 
m dt ~ V~ = -6rc#a(I + 6rcR~2H) �9 (V~ - C "  X~) + F" (8.8) 

d , --8rc#a3(~r'~) -- ~ )  + ~/1' ma2J " ~ , ~ =  (8.9) 

and the FD theorems are 

( f c ' ) =  #aUoo(Rlf2), (I~r = #a3f2oo(R~/2) (8.10) 

(.oo 
J - oo (F/ ( t )  F/(O) ) dt = 2kB T6n#a[6 U + �89 + H~) + o(R~/2)] 

(8.11) 

f_~  ( F / ( t ) M : ( 0 ) >  dt=k~T#a2o(R~/2) (8.12) 

f - 2  (ff/l/(t) f/l}(O)) dt = 2k B T8g#a3Eb~j + o(R~/2)] (8.13) 

9. T H E  FD T H E O R E M  FOR A B R O W N I A N  P A R T I C L E  IN A 
C E N T R I F U G E  

Recently Ryskin (3~ studied diffusion in a rapidly rotating flow on a 
phenomenological basis and found that the diffusion coefficients depend on 
the angular velocity of the fluid and become anisotropic. We shall show 
briefly that his results can also be derived from the semimicroscopic level 
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of the coarse graining by using the FHD. As in previous sections, consider 
a particle in a rotating fluid. We choose the coordinate system to translate 
with the velocity U~ and to rotate with the angular velocity ~ ) a l o n g  the 
x~ direction, and use the same normalilzation as in Section 2. We assume 
that the fluid rotation is so fast that the time derivative Ov'/c~t ' can be 
neglected as compared to the Coriolis force 2 ~ ) x v ' ,  which implies 
Uo/t-2'sa ~ 1 (centrifuge condition). The convective terms are also assumed 
to be small as compared to the Coriolis term. The condition 

golK2'fa 4~ Tla/2 ~ 1 (9.1) 

is different from the condition for the case of the slow rotation (2.22), 
R ~ R~/2 ,~ 1, where Ta = 212'faZ/v is the Taylor number. Under the condi- 
tion (9.1), the equations and the boundary conditions corresponding to 
(2.14) and (2.15) are given by 

Tae2 x v = --Vff+A~, V ' ~ = 0  (9.2) 

~ = ( ~ e - f ~ s )  x r, r o n S p  

-+ - U , t  as Irl -+ oo (9.3) 

respectively, where e 2 is the unit vector in the x2 direction. Similarly, 
the equations corresponding to (3.3) and (3.5) are those in which 
R(6o.~. V +  c3~jc3xj) is replaced by Taeizj, and the equation corresponding 
to (3.9) becomes one in which -R([3ij~.V-c3~jc3xi) is replaced by 
-Taeizj. The analysis in terms of the expansions in T~/2 can proceed 
similarly as in Sections 4-6 (see ref. 38), and yields the same results as 
those in Sections 4-6 if the Reynolds number Rlx/2 and the tensor Hij = Hi* 
are replaced by T~/2 and by 

1 5  1 4  1 3  
6nh , - x /~  7' 6nh2-x/~ 7' 6/rh3 - ~ 5 (9.4) 

respectively. Thus, the Langevin equations for a particle of arbitrary shape 
are given by 

d-it a 'n .  = - \  Vlo/2At'H, I ] \A' ,  ZJkns3-ai) + (9.5) 

up to O(T1a/2), where V~ = (d/dt)X B and X~ is the position vector from the 
origin, and the FD theorems are again given by (8.2)-(8.6) and (9.4) with 
replacement of RI~:/2 by T~/2. 
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10. D ISCUSSION 

We have derived the Langevin equations for a Brownian particle of 
arbitrary shape in an unbounded rotating fluid by a semimicroscopic 
approach based on the FHD. In order to obtain the approximate solution 
valid over the entire flow region, we used matched asymptotic expansions 
in small Reynolds numbers (R4~R~/2~ 1) or in small Taylor numbers 
(Uo/O'ja~ Tla/2~ 1), and obtained the systematic force and torque and 

]/2 1/2 the FD theorems valid up to R~ (T~) .  The Langevin equations may 
be interpreted as follows. For simplicity, consider a spherical particle 
[(8.8)-(8.13)]. Constant tensors H and H* can be seen as a uniform flow 
i.n the ith direction that a fluid sphere of radius r ,=R21/2(T 1/2)>1 
experiences when the particle moves along the j t h  direction with unit 
velocity. The particle dissipates its kinetic energy due to friction on its 
surface and also on the fluid surface at r , .  The random force of zeroth 
order acting on the particle is due to the thermal agitation within this fluid 
sphere and balances the zeroth-order particle drag. A fluid sphere of radius 
r ,  moves with a velocity of the order of 1/2 1/2 R~ ( T ~ )  when it is acted on by 
the random forces at its surface due to thermal agitation in the fluid sur- 
rounding the sphere. This agitation balances the drag of the fluid sphere. 
The latter effects are due to the nonlinear terms of the Navier-Stokes equa- 
tion. The particle moves randomly within the fluid sphere of radius r ,  that 
undergoes Brownian motion due to the thermal agitation in the rotating 
fluid. Thus, the FD theorems hold up to the first order of R~/2(T~/2). The 
above picture suggests that the strength of the nonlinearity is not uniform 
is space or time, which would also be expected in the coarse-graining 
processes in other contexts. It should be noted that even if the particle is 
a sphere, the drag tensor has nondiagonal elements such as  h3,  while the 
correlation functions of the random forces are diagonal, but anisotropic 
[(8.6), (8.8), and (8.11)]. This is consistent with the fact that the forces 
perpendicular to the velocity make no contribution to the energy dissipa- 
tion. The rigid rotation of the whole fluid affects not only the drag and 
torque of the particle and the correlation functions of the fluctuating forces 
perpendicular to the angular velocity vector f~), but also those parallel to 
it. For a particle of arbitrary shape the force depends on torque and vice 

1/2 1/2 versa because of a nonzero A up to R~ (T O ), and also for the fluctuating 
force and torque. If we know the explicit formulas of the Stokes drag and 
torque on the particle, it is easy to obtain the Langevin equations and the 

1/2 1/2 FD theorems valid up to R,~ (T a ). In the limit of 1,,2 1/2 R~ (T a )--+0, the sur- 
face of the fluid sphere at r ,  goes to infinity and the additional dissipation 
at the surface vanishes; thus, our formulas reduce to the well-known 
equations. (36) 
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Let us consider the diffusion of a spherical Brownian particle under 
fluid rotation. The Fokker -P lanck  equation to the Langevin equations for 
a spherical Brownian particle (8.8), (8.10), and (8.11) is given by 

or---; w(x', c)+Vx,{C', x'w(x', c)} 

(10.1) 

where W(X', t ') is the probability distribution function of the Brownian 
particle and 

Do Do k B T  
D •  1 +6gR~2hl  ' D I I -  1 +67zR1/2h2 ' D o - 6 r c #  a (10.2) 

Since h 2 > h l > 0 ,  the diffusion coefficients D• and Dll get smaller as 
compared to Do due to the fluid rotation, and thus they have weak 
anisotropy. Solving Eq. (10.1) subject to the conditions 

W(X', O) = 6(X'), W(X', t ') -+ O, as IX'I ~ 0  (10.3) 

we have 

1 ( x;a+x32 X~z-~ (10.4) 
W(X' ,  t') = (4nt,)3/2(D~Di I)1/2 exp - 4D• t' 4DII t '] 

For  the case of rapid rotation the Fokker-Planck  equation is given by 
removing the convective term in (10.1) and replacing the diffusion 
constants by 

Do Do k B T  
D• - 1 + 67cT~/2hl ' Did - 1 + 67zT1/2h2 ' D~ = 6rttta (10.5) 

These are the same as the results obtained by Ryskin (3~ if we take into 
account the factor 2 in the definition of T~. It is hoped that the R1K/2(r12) 
dependence of the diffusion constants is examined experimentally; e.g., 
with parameters kB = 1.38 x 10 16 erg/deg, T =  300 K, v = 0.01 cm 2 sec -~ 
(water), in slow rotation O f =  10 sec 1 and a =  10 .3 cm, and then have 
U o = 10 .5/2 cm/sec, R = 10 7/2 Uo/f2,fa = 10-1/2, and R 1/2 = 1 0 - 3 / 2 ;  while 
in rapid rotation s 10 3 sec 1 and a = 5 #m, and we have T~/2= 0.16 and 
Uo/t-2'fa = 10 3. The correction is small, but detectable. 
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A P P E N D I X A .  THE EFFECTS OF THE T E R M S  R ( O . V ) 0  ON 
THE C O R R E L A T I O N  F U N C T I O N S  

If the R(r V)~ term is retained, terms R((~" V)r and R( (~ .  V)~F)  
are to be added to (3.3) and (3.5), respectively. Provided that the 
probability distribution of ~r is nearly Gaussian, then the triple moment 
(OOO) vanishes and the fourth-order moment (OO6~r) can be expressed 
in terms of the second-order moment (OO).  Similarly, the fourth-order 
moments ( ~ r  ( r  etc., can be expressed in terms of the second- 
order moments as (VV)o, (vF)o ,  ( ~ r ) o ,  etc., to the lowest order in RI~/2, 
which are solutions of (2.16) with all R terms dropped. If we consider the 
equations for the triple moments such as (~r the R term yields fourth- 
order moments such as R((~-V)r162 From the above arguments they 
can be expressed by the second-order moments as ( ~ a ) o ,  which implies 
that terms like R < ( ~ . V ) r  is (3.3) and (3.15) are O(R2). Similar 
arguments for the effects on ( F )  and (191) show that the effect of R terms 
are O(R). 

A P P E N D I X  B. E S T I M A T I O N  OF THE S U R F A C E  INTEGRAL 
IN (3 .14)  

First we consider the term in (3.14), 

E ( r ) = - R  lim j q* (x ) . (~ (x )O( r ) ) r e (x ) .dS(x )  (B.1) 
A ~ ~ S A  

When x lies at large distance in the outer region, from (4.1), (5.4), and 
(5.15) we have 

R~(x) = R'~/2C �9 ~ + . . .  (B.2) 

q*(x) = R~/2G*( i ) .  fo + ' "  (B.3) 

while, if we put 

(~(x) ~r(r)) - - V  r �9 K(x, r), 

then (K, D) satisfies 

(/~(x) O(r)) ~ - V  r �9 D(X, r) (B.4) 

} v ' V +  ~ x j j - 6 i ~  3 Kjkb~(x, r)+~-Dktm(X,cx i r)=Tiklm6(X--r)  

Oxi Kijt,~ = 0 

(B.5) 
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Introducing the outer variable i and expanding in R~/2 a s  

K(x, r) = R~/2 Kl( i ,  r) + . . .  

D(x, r) = R~ Dl(X, r) + -.. 
(B.6) 

and substituting these into (B.5), we obtain 

z ~ K ~ - V O  1 - M �9 K 1 = 7 6 ( i - ~ ) ,  ~7. K1 = 0  (B.7) 

to the lowest order in RI~/2, where M is defined by (D.4). Because Eqs. (B.7) 
are similar to Eqs. (4.18) for G, we may expect that KI(~, ~) has the same 
structure as G(~), in particular, the same asymptotic behavior. Substituting 
(B.2), (B.3), and (B.6) into (B.1), we obtain 

f ,  
E(r)=  -Rs:  lim | [ G * ( i ) -  fo]" [V~KI(i ,  ~ ) ] ( C . i ) . d S ( i )  

A ~ oo J S A  

(B.8) 

to the lowest order. It is shown in ref. 38 that the far-field structure of G ( i )  
and G * ( i )  is a cubical cone, i.e., 

G(~) ~ G * ( ~ ) ~  L~I--1 for 
+ 

~<0(1) as l~2l ~ ~ 1~211/3 
(B.9) 

Thus, the dominant contribution from large [i] to the surface integral (B.8) 
for fixed ~ can be asymptotically estimated as 

fSA (G*( i ) "  fo)" [V K(~,, ~)](C- i )  �9 dS( i )  

1 1 
I:~l I~-~12 lil lil 2/3~ lil--4/3 (B.IO) 

Letting A ~ 0% we obtain the estimation for any fixed r, 

E(r) = o(R,~) (B.11) 

The other terms in (3.14) can be estimated similarly, and it is easily seen 
that those are smaller than E(r). 

A P P E N D I X C .  THE GREEN'S  F U N C T I O N  A N D  THE T E N S O R  H 

The computation of the Green's function G is the same as in ref. 39, 
but there are typographical errors in the latter results. We show the 
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Green's function as follows. It is convenient to introduce the Fourier trans- 
form in space as 

G(~) = 8@ f G(k)exp(- ik~)  d~ 

The Fourier transform of (4.18) is given by 

kikl~ Air_ ((~i3 _ 2 kz]s ~ 

= -Pu(k)  (C.1) 

where Tj. is eliminated by using the solenoidal condition and P~(k)= 
6~ - k i k j k  2. Introducing the variable k 1 = -/~ sin r/ and k 3 = ]~ COS r/, and 
after tedious but straightforward calculation, we obtain Gu(k ) as 

G I1= 2 ( k2 c~ ~l + k ~ sin2 ~l ) --~+ + K-f_ ) + 2 -  Is + 

lc 2 [ 1 1 ]  
-2k~Ssin~/cost/ (1 + ~ ) ~ - + + ( 1 - ~ ) ~ - _  (C.2) 

k2k 
G12 = (k 2 sin r/+ 2 cos r/) k2(k 4 + if2) (C.3) 

' [ ' ; ]  G,3 = ~ (k 2 cos 2 * /+  k~ sin 2 *1) (1 + () ~ + (1 - ( )  

k2[  1 ~_f+] /~2 ( ~_~_+ I )  
+~-~ ( 1 -  ~) ~ - - -  (1 + ~) +~-  sin q cos r/ +~-_ (C.4) 

621 m 

+ 

__k2/~ (k2 cos r/ _ sin r/) I (~--R2)  - }  ( - k 2 " ] ~ l  l 
1+ K +  1 k J K + j  k 4 +  1 

k 2 ( k 4 + l ) ( k 2 s i n q + c o s q )  ( l - l )  1+ 

11]  (c.5) 

k2/~ 2 

G22 k 6 + 4k~ (C.6) 
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G2 3 B 

G21 m 

k2Jc k2"~ 1 
kT-~l (k2 sin r/+ cos r/) I(1 (1 

1 
k2/~ 1 ) ( k 2 c ~  k 2 ( k  4 + 

+ ( 1 + ( ) ( 1  k2'x 1 1] 

2k 2(k 2sin eq+k~cos 2q) (1+~)~+++(1-( )  

~(-;)27-(1+()y2+ +Tsin.cos~ U++~-_ 
k2~ 

G32 = -- (k 2 cos r/-  2 sin r/) k2(k 4 + ~2) 

G'=~ (k2 sin~ ~ +G c~ +2-_- +-5- 

]~2 I 1 1 ]  + ~ s i n  ~/cos ~ (t - ( ) ~ +  (1 + ~ ) ~ f  

(C.7) 

(c.8) 

(C.9) 

(C.lO) 

where 

( = 2 ~ ,  K + = k 4 + ( l + ( )  2 

Also the Stokeslet s;j(k) is of the form 

1 
(C.11) 

From (4.17) and (4.20), the tensor H can be written as 

1 
H - 8~ 3 f { G ( k ) - s ( k ) }  dk (C.12) 

This integral can be carried out analytically by using the spherical 
coordinates (k, 6, t/), where ~2 = k2 ~_ k 2, /~ = k eos  6, and k 2 = k sin 6. The 
components HI2, H21, H23, and H32 vanish because of the symmetry of G o 
and S,j, and thus we obtain (8.6) and (8.7). 
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APPENDIX  D. THE RECIPROCAL RELATION BETWEEN G 
A N D  G* 

We shall show the reciprocal relation between G(x, r) and G*(x, r). 
Let us write Eqs. (4.18) and (5.16) as 

V~.T[G,  T ] -  M .  G = - 1 6 ( x - r )  (D.Ia) 

V . G = 0  (D.lb)  

Vx-T[G*,  T*]  - M*-  G* = -16(x  - r ' )  (D.2a) 

V. G * = 0 (D.2b) 

where 
TIC, T]-= - T I  + V  XG + (V xG)'  (D.3) 

M - ( C . x ) . V x I +  C, M * ~  - ( C ' x ) . V x i + C  t (D.4) 

and the tilde of the argument in G and G* is omitted for simplicity. Now 
take the scalar product of (D.la) with G*(x, r'), and (D.2a) with G(x, r) 
and subtract, to obtain 

G*(x, r ' ) .  {V x .T[G,  T ] -  M .  G(x, r)} 

- G(x, r) .  {V x'TEG*, T * ] -  M * -  G*(x, r')} 

= - (G*)'(x, r') ~5(x- r) + G(x, r) 6 ( x -  r') (D.5) 

Substituting (D.3) and (D.4) into (D.5) and using the relation (32) 

(Vx. G * ) - T [ G ,  T] = T[G *, T*]  . (V x �9 G) (D.6) 

we obtain 

V x �9 {G*.  r IG ,  T] - G" T[G*, T*]  - (G*- C .  x)G } 

= G(x, r) 6(x - r ' ) -  (G*)~(x, r') 6(x - r )  (D.7) 

Integrating this over a sphere of radius K and using Gauss' theorem yields 
the reciprocal relation as 

Gu(r', r) = Gj*(r, r') (D.8) 

provided that the surface integral vanishes as K ~  ~ .  From (4.17), (4.20), 
(5.15), and (5.18), H and H* are defined as 

H = - lim {G(r, 0) - s(r, 0)} (D.9) 
r - - * 0  

H* = - lira {G*(r, 0 ) -  s(r, 0)} (D.10) 
r ~ 0  

822/'59/1 2-26 
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Because of the relation so(r 1, r2)= sji(r2, rl) for the Stokeslet, the following 
identity holds: 

Gu(rl,r2)-sij(rl,r2)=Gj*(r2, rl)-sji(r2, rl) (D.11) 

Putting r2 = 0 and letting rl --+ 0 in (D.11), and from (D.9) and (D.10), we 
finally obtain 

H* = Hji (D.12) 

This relation can also be shown by the direct calculation of H* using the 
same procedure as in Appendix C. 

A P P E N D I X  E. D E R I V A T I O N  O F  T H E  F I R S T - O R D E R  O U T E R  
F IELD ( W l ,  I-I1) 

Using (5.9), we can write (6.8) as 

A W I - V ( [ ' I I +  P * ) -  M �9 W l =  M* �9 Q*, V . W l = O  (E.1) 

where the tilde is omitted, and the boundary conditions are given by (6.9) 
and (6.11). If we write the solution of (E.1) as 

W~(r )  = - �89  - G ( r ) }  �9 fo + A(r )  
(E.2) 

I I l ( r  ) + P~*(r)  = - � 8 9  - T ( r ) }  �9 f o  + B ( r )  

then (A, B) must satisfy the following equation: 

A A - V B -  M . A =  - �89 + M * ) . G * .  f0 

V . A = 0  

and the boundary conditions 

A ( r ) = o ( r  -1) 

~ 0  

Note that the parentheses on the 
matching conditions (6.11). From 

(E.3a) 

(E.3b) 

as ]rl --+0 
(E.4) 

as Irl --* c~ 

right-hand side in (E.2) satisfies the 
the definitions of M and M* in 
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Appendix D and the fact C = - C '  for rigid rotation, it follows that the 
right-hand side of (E.3a) vanishes. Thus, we have 

A(r) = 0, B(r) = 0 

which leads to (6.12). 
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